Dimensions - length, area and volume

Name:	Class:	Date:		
		Mark	/ 3	%

1) Identify whether each expression can be used to represent length, area or volume, using **y** for **yes** and **n** for **no**.

Note that the letters a,b,c and d represent lengths.

	Length	Area	Volume
ab			
a + b + c + d			
acd			

2) Identify whether each expression can be used to represent length, area or volume, using y for yes and n for no.

Note that the letters a,b,c and d represent lengths and 2 and 3 are numbers that have no dimensions.

	Length	Area	Volume
3ab			
2b + 3c + d			
ab(c+d)			

[1]

[1]

3) Identify whether each expression can be used to represent length, area or volume, using **y** for **yes** and **n** for **no**.

Note that the letters a,b,c and d represent lengths. π , 2 and 3 are numbers that have no dimensions.

	Length	Area	Volume
πb^3			
$ad^2 + \pi ad^2$			
πа			

Solutions for the assessment Dimensions - length, area and volume

1) ab is area, a + b + c + d is length, acd is volume,

2) 3ab is area, 2b + 3c + d is length, ab(c + d) is volume,

3) πb^3 is volume, $ad^2 + \pi ad^2$ is area, πa is length,

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute